B.Sc.-I 1st Semester (Hons.) Examination,

November-2014

MATHS

Paper-BHM-112

Calculus

Time allowed: 3 hours]

[Maximum marks: 60

Note: Attempt five questions in all, selecting one from each section. Question No. 9 is compulsory.

Section-I

1. (a) By definition, prove that

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous at $x = 0$.

- (b) Find the nth derivative of e^x sin²x sin 2x.
- 2. (a) If $y = e^{m \cos^{-1} x}$, prove that $(1 x^2) y_{n+2} (2n+1) xy_{n+1} (n^2 + m^2) y_n = 0$
 - (b) Obtain the values of sin 31° upto four places of decimals.

Section-II

3. (a) Find all the asymptotes of the curve

$$x^3 + 2x^2y + xy^2 - x^2 - xy + 2 = 0$$

91054-P-3-Q-9 (14)-500

P.T.O.

- (b) Find the asymptotes of the curve $r \cos \theta = a \sin^2 \theta$.
- 4. (a) In the cycloid $x = a (\theta + \sin \theta)$, $y = a (1 \cos \theta)$ prove that $P = 4a \cos \frac{\theta}{2}$.
 - (b) Show that at the point (1,-1), there is a cusp on the curve $x^3 + xy^2 + y^3 4x^2 + y^2 + 4x + y 1 = 0$

Section-III

- 5. (a) Trace the curve $r = a(1 + \sec \theta)$
 - (b) Find a reduction formula for $\int \frac{x^m}{(\log x)^n} dx$.
- 6. (a) Connect:

$$\int x^{m} (a + b x^{n})^{p} dx$$
 with $\int x^{m} (a + b x^{n})^{p-1} dx$.

(b) Show that the length of the loop of the curve $3ay^2 = x (x - a)^2$ is $4a / \sqrt{3}$

Section-IV

7. (a) Show that the area of the loop of the curve

$$ay^2 = (x-a)(x-5a)^2$$
 is $\frac{256}{15}a^2$.

- (b) Find the area of the loop of the curve $x = a(1-t^2)$ $y = at(1-t^2)$.
- 8. (a) Find the volume of the solid formed by the revolution about the x-axis of the curve $y^2(a+x)=x^2(3a-x)$.
 - (b) Find the surface area of the solid generated by revolving one arc of the curve $x = a (\theta \sin \theta)$; $y = a (1 \cos \theta)$ about x-axis.

Section-V

- 9. (a) Evaluate $\lim_{x\to 0^+} \frac{x}{|x|}$
 - (b) Find nth derivative of $\frac{1}{ax+b}$
 - (c) Define node and cusp.
 - (d) Evaluate $\int_{0}^{\pi/2} \sin^{6} \theta \, d\theta$
 - (e) Find the area of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - (f) What is axes of revolution?